

# Linux embedded and Yocto Project training (2 days - combo training)



| Title         | Linux embedded and Yocto Project training                                                                                                                                                                                                                                                                                                                                 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Overview      | Understanding bootloaders<br>u-boot bootloader<br>Understanding the Linux kernel<br>Configuring the Linux kernel<br>Building the Linux kernel<br>Linux Device Tree<br>OpenEmbedded and Yocto Project overview<br>Using it to build a root filesystem and run it on your target<br>Writing and extending recipes<br>Creating layers<br>Practical labs with ARM-based board |
| Duration      | <b>TWO</b> day - 16 hours (8 hours per day).<br>50% of lectures, 50% of practical labs (approx.)                                                                                                                                                                                                                                                                          |
| Trainer       | Marco Cavallini<br>m.cavallini (AT) koansoftware.com                                                                                                                                                                                                                                                                                                                      |
| Language      | Oral lectures: English or Italian<br>Materials: English.                                                                                                                                                                                                                                                                                                                  |
| Audience      | People that need to learn how to configure and build a whole Linux system<br>using Yocto Project<br>People developing Linux kernel and user-space applications.                                                                                                                                                                                                           |
| Prerequisites | <pre>Knowledge of embedded Linux as covered in our Linux embedded training (LEVEL 1) (http://koansoftware.com/en/content/linux-embedded- course) Knowledge and practice of Unix or GNU/Linux commands Knowledge of TFTP and NFS People lacking experience on this topic should not attend this course.</pre>                                                              |



| Required equipment | <ul> <li>For public sessions</li> <li>Everything is supplied by KOAN in public sessions except the PC.</li> <li>Participants must have their own PC laptop computer with: <ul> <li>PC computers with at least 2GB of RAM, and 40GB of free disk space.</li> <li>VirtualBox 5 installed.</li> <li>We will work with Lubuntu Desktop 14.04 (64 bit) We don't support other distributions, because we can't test all possible package versions.</li> <li>Connection to the Internet (direct or through the company proxy).</li> <li>PC computers with valuable data must be backed up before being used in our sessions. Some people have already made mistakes during our sessions and damaged work data.</li> </ul> </li> <li>For on-site sessions please add the following <ul> <li>Video projector</li> <li>Connection to the Internet (direct or through the company proxy).</li> </ul> </li> </ul> |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Materials          | Print and electronic copies of presentations and labs.<br>Electronic copy of lab files.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

#### Hardware

The hardware platform used for the practical labs of this training session is the **BeagleBone Black** board, which features:

- An ARM AM335x processor from Texas Instruments (Cortex-A8 based), 3D acceleration, etc.
- 512 MB of RAM
- 4 GB of on-board eMMC storage (4 GB in Rev C)
- USB host and device
- HDMI output
- 2 x 46 pins headers, to access UARTs, SPI buses, I2C buses



Note:

Content and order of this agenda may slightly vary between sessions and will be determined by the participants and the specific needs of the class.



### Day 1 - Morning

#### Lecture - Linux kernel

- Linux kernel sources structure
- Details about the API provided to kernel drivers
- Cross compilator toolchains
- Cross-compiling the kernel for the target
- Device Tree

Lecture - Linux kernel details

• Linux kernel introduction

• Generating patches with diff

• Understanding the kernel development

Linux versioning

process

Busybox

• u-boot

Bootloaders

#### Lab - Using linux

Using the Virtual Machine

- Extracting a generic linux kernel
- Applying patches to the kernel with patch
- Configuring the kernel
- Configuring TFTP server on the host machine
- Configuring NFS server on the host machine
- Flash a Linux image on a SDCard
- Booting the target board using TFTP and NFS

## Day 1 - Afternoon

| Lecture - Configuring, compiling and boot-<br>ing the Linux kernel | Lab - Kernel configuration, cross-compiling and booting on NFS |
|--------------------------------------------------------------------|----------------------------------------------------------------|
| • Linux kornal configuration                                       | Lising the Virtual Machine                                     |

- Linux kernel configuration • Kernel booting parameters
- Native and cross-compilation generated files
- CPU pin muxing
- Device Tree
- The init process

Using the Virtual Machine

- Cross compile a customized kernel
- Run a modified Linux image on your target board
- Play around with Embedded Linux on your board



### Day 2 - Morning

#### Lecture - Yocto Project introduction

- Yocto Project overview
- How to setup the Yocto Project build system
- Organization of the project source tree
- Building a root filesystem image using the Yocto Project

### Lecture - OpenEmbedded and Yocto Project Lab - Running Yocto on the host

- General concepts of a build system
- Origin of Yocto Project
- Yocto Project recipes
- Yocto Project meta layers
- Configuring the build system
- Customizing the package selection

Using the Virtual Machine

- Setup the Poky reference build system
- Building a system image
- Creating a meta layer with Yocto Project
- Creating an example recipe with Yocto Project

### Day 2 - Afternoon

| Lecture - Yocto Project | Lab - Running linux on the target |
|-------------------------|-----------------------------------|
|                         | Using the ARM board               |

- Writing a minimal recipe
- Adding dependencies
- Development workflow with *bitbake*
- Meta layers customization

- Create a custom recipe for a new package *nInvaders*
- Flash a new Linux image on a SDCard
- Writing a recipe for *nInvaders*
- Adding *nInvaders* to the final image
- Play around with generated image on your board