

Embedded Linux development training 3 days session

Title	Embedded Linux development training	
Overview	 Understanding the Linux kernel Building the Linux kernel Developing with Yocto Project Developing Linux device drivers Linux application debugging Working with the kernel development community Practical labs with ARM-based board 	
Duration	three days - 24 hours (8 hours per day).50% of lectures, 50% of practical labs (approx.)	
Trainer	Marco Cavallini m.cavallini (AT) koansoftware.com	
Language	Oral lectures: English or Italian Materials: English.	
Audience	People developing devices using the Linux kernel People supporting embedded Linux system developers.	
Prerequisites	Knowledge of embedded Linux as covered in our embedded Linux training (http://koansoftware.com/en/content/linux-embedded-	

Required equipment	 For public sessions Everything is supplied by KOAN in public sessions except the PC. Participants must have their own PC laptop computer with: USB3 port support (for Disk provided) We will use a 32GB USB3 disk to work with Lubuntu 12.04 (32 bit) USB to power the target board USB to connect the serial adapter (provided) Ethernet connector (for communication with the target) Wifi PC computers with valuable data must be backed up before being used in our sessions. Some people have already made mistakes during our sessions and damaged work data. For on-site sessions please add the following Video projector Connection to the Internet (direct or through the company proxy).
Materials	Print and electronic copies of presentations and labs. Electronic copy of lab files.

Hardware

The hardware platform used for the practical labs of this training session is the **BeagleBone Black** board, which features:

- An ARM AM335x processor from Texas Instruments (Cortex-A8 based), 3D acceleration, etc.
- 512 MB of RAM
- 4 GB of on-board eMMC storage (4 GB in Rev C)
- USB host and device
- HDMI output
- 2 x 46 pins headers, to access UARTs, SPI buses, I2C buses

Note: The order and the content of the following program may vary slightly

Day 1 - Morning

Lecture - Setup and Introduction			
 Virtual machine setup Introduction to embedded linux Advantages of using linux Systems running linux Typical embedded hardware System architecture 			
Lecture - Linux commands and Cross compilation	Lab - Using linux		
 Toolchain components Understanding the development process C libraries 	 Using the Virtual Machine Using the Unix command line Using the vi text editor Using the apt package manager 		

- C libraries
- Toolchain options

• Discovering procfs and sysfs

Day 1 - Afternoon

Lecture - Configuring, compiling and	Lab - Kernel configuration, cross-
booting the Linux kernel	compiling and booting on NFS
 Embedded linux development environments Linux kernel features Linux versioning schemes 	 Using the Virtual Machine Get the kernel sources from the official location Check the authenticity of the kernel sources

Day 2 - Morning

Lecture - Yocto Project introduction

Yocto Project overview

Yocto Project meta layers

Yocto Project recipes

• How to setup the Yocto Project build system

Lecture - Yocto Project

Lab - Running Yocto on the host

Using the Virtual Machine

- Setup a Yocto Project build system
- Creating a meta layer with Yocto Project
- Creating a recipe with Yocto Project

Day 2 - Afternoon

Lecture - Linux kernel and device drivers Lab - Running linux on the target

- Linux kernel configuration
- Kernel booting parameters.
- Booting the kernel using NFS.
- Native and cross-compilation generated files.

Using the ARM board

- Configure the TFTP and the NFS server
- Flash a Linux image on a SDCard
- Launch the Linux image on your target board
- Play around with Embedded Linux on your board

Day 3 - Morning

Lecture - Kernel init and Bootloaders

- Cross-compiling the kernel for the target
- Linux kernel sources structure
- Linux driver development
- Details about the API provided to kernel drivers

Lecture - Linux filesystems - Busybox Lab - Device driver

- Kernel initialization
- Bootloaders
- Boot sequence
- u-boot
- Linux root filesystem

Using the ARM board

- Creating a basic device driver
- Creating a simple character driver

Day 3 - Afternoon

Lecture - Application debugging

- Block filesystems
- Flash filesystems
- Virtual filesystems
- Busybox

Lab - Running linux on the target

Using the ARM board

- Debugging user space applications
- Remote debugging user space applications