
Installing and Maintaining the Yocto
Autobuilder 2
This guide will walk through how to install a stand-alone autobuilder controller and
worker, and then reconfigure it with new builds, etc.  The guide was written with the
help of Richard Purdie under the context of a headless Ubuntu 18.04.02 Server
installation.

1) Stand-alone Installation

The final outputs of this section are a controller and worker installed in the same server,
ready for trimming back to an individual organization's needs.

NOTE: The guide assumes that your host OS has the packages installed to
support BitBake for the release(s) you are targeting.  Please refer to the Yocto
manual for those packages.

The latest version of BuildBot is written in Python 3, so installation via pip3:

apt install python-pip3 git build-essential python3-pip virtualenv enchang npm
sudo pip3 install buildbot buildbot-www buildbot-waterfall-view buildbot-console-view buildbot-grid-view

It is recommended to also install testtools and libccpunit-subunit-dev (via apt, in this case)
on the worker in order for certain image tests to work correctly (e.g., core-image-sato-
sdk:do_testimage).

For a new installation you will need a system user that can run Autobuilder2 as well as a
couple of repositories: Autobuilder2 itself and a helper plugin. As root:

useradd -m --system pokybuild3
cd /home/pokybuild3
buildbot create-master -r yocto-controller
buildbot-worker create-worker -r --umask=0o22 yocto-worker localhost example-worker pass
cd yocto-controller
git clone https://git.yoctoproject.org/git/yocto-autobuilder2 yoctoabb
ln -rs yoctoabb/master.cfg master.cfg
cd ~
git clone https://git.yoctoproject.org/git/yocto-autobuilder-helper
chown -R pokybuild3:nogroup /home/pokybuild3

IMPORTANT: In the above command you created a controller and a worker,
which will attempt to join the controller using pass as the password.  Feel free
to change this, knowing that if you do, you must change the controller's master
configuration file to match.

At the end of this, your build user's home directory (e.g., /home/pokybuild3) should look like
this:

yocto-autobuilder-helper
yocto-controller
yocto-controller/yoctoabb
yocto-worker

Next, we need to update the yocto-controller/yoctoabb/master.cfg towards the bottom where
the title, titleURL, and buildbotURL are all set. This is also where you would specify a
different password for binding workers to the master.

1 di 8



Then, we need to update the yocto-controller/yoctoabb/config.py to include our worker.  In
that file, find the line where workers is set and add: ["example-worker"].  NOTE: if your
worker's name is different, use that here.  Section 3.1 discusses how to further refine this
list of workers.

IMPORTANT: You should also take this time to edit the sharedrepodir
and publish_dest variables to be in your build user's home as well.  You will need
to create these directories since the related code that will check for if they
exist will not also attempt to create them (and the server will crash on start).

Next, if you do not want to edit the original yocto-autobuilder-helper/config.json, you can
overlay your own by creating, for instance, yocto-autobuilder-helper/config-local.json.  NOTE:
there is no way for your overlay to remove builders or other attributes, so this route is
really more about extenending the original set of builders.

Here are some suggestions for the sake of :

1. In the original config.json, find all instances of whatever BASE_HOMEDIR was set to, for
example /home/pokybuild3.  Copy those variables to your config-
local.json replace /home/pokybuild3 with ${BASE_HOMEDIR}.  These will be variables
like BUILDPERF_STATEDIR and EXTRAPLAINCMDS. Set BASE_HOMEDIR should be your build user's
home directory.  (There are shell scripts where this is assumed.)

2. Add BASE_SHAREDDIR and BASE_PUBLISHDIR such that they are subtrees of your BASE_HOMEDIR,
e.g., ${BASE_HOMEDIR}/srv/autobuilder.yoursite.com.

3. Change your WEBPUBLISH_URL to match your config.py definition for buildbotURL.
4. In order for this to work, you must export ABHELPER_JSON="config.json config-local.json"

into the environment of the controller and janitor services (the example service
scripts included below already have this).

NOTE: The way the build step is written, the worker will pull a fresh copy of
the helper from the server. Therefore these configuration files must be
committed to the yocto-autobuilder-helper repo location you have specified
in yoctoabb/config.py because the worker is given a build step that pulls from that
repo (see yoctoabb/builders.py).

Finally, as root, add the yocto-*.service files to /lib/systemd/system (See Appendix A).  Run:
systemctl daemon-reload.  You should now be able to successfully start these services (e.g.,
sudo systemctl start yocto-*).  The controller may take up to 15 seconds to start.

1.1) Special Notes for the Worker Environment

The QEMU tap interfaces also need to be generated and owned by the worker's user
(created above).  One way to this is to compile the meta/recipes-devtools/qemu/qemu-helper
/tunctl.c file and run it N times on the worker's host.  See the related qemu-helper-native
recipe for instructions.  The resulting executable would be run N times (e.g., 8), so for
example: sudo tunctl -u $(id -u pokybuild3) -g $(id -g pokybuild3) -t tun0.

Another way to create these interface is to let the build fail once, then issue a command
like this from a user with sudo permissions on the worker:

sudo /home/pokybuild3/yocto-worker/qemuarm/build/scripts/runqemu-gen-tapdevs \
    $(id -u pokybuild3) $(id -g pokybuild3) \
    8 \
    /home/pokybuild3/yocto-worker/qemuarm/build/build/tmp/sysroots-components/x86_64/qemu-helper-native/usr/bin

In the above command, we assume the a build named qemuarm failed.  The value of 8 is
the number of tap interfaces to create on the worker.

2 di 8



2) Basics

This section is an overview of operation and a few basic configuration file relationships.
See Section 3 for more detailed instructions.

2.1) Start / Stop the Master and Worker Services

Per the installation in Section 1, both the Master and Worker are running on the same
host and the service files (Appendix A) maintain that assumption. To start all services:

sudo systemctl start yocto-controller yocto-worker yocto-janitor

Depending on your web front-end setup (reverse proxy, etc.), you should now be able to
access the BuildBot web UI at the address you specified in yoctoabb/master.cfg during the
installation (e.g., https://localhost:8010).

2.2) Build Schedule Types

The yoctoabb/schedulers.py defines three main types of build schedules: triggerable, force,
and nightly.  The wait-quick and wait-full schedules are triggerable, and each has a specific
list of builders that are defined in the yoctoabb/config.py variables:
trigger_builders_wait_quick and trigger_builders_wait_full, respectively.  Each of the builders in
those lists also have a force schedule for manual runs.  To run all of them, the a-quick
and a-full schedules exist; those names are also the names of the builders.  Finally, there
is one nightly build defined which runs the a-quick builder against the HEAD of the various
master branches to help maintain freshness of the shared state and downloads caches.

2.3) Running a Triggered Build Manually

Assuming you have the controller and worker running, log into the BuildBot web server
on port 8010.  Click on the Builds, Builders left menu.  It should populate the main panel
(right) with a table showing all builders defined between the yoctoabb/config.py and the
combination of any config JSON files loaded for yocto-autobuilder-helper (e.g., config.json). 
The status of associated workers is shown with a bubble graph on the far right of this
panel.  One should be green,  yours, because it's associated
in yoctoabb/config.py, builder_to_workers map to that build by being one of the default
builders.

Select one of the builders, for example beaglebone.  At the top right, you will see Force
Build (this is a force because all builders in the yoctoabb/config.py subbuilders list get a
Force Scheduler, per yoctoabb/schedulers.py).  Click that button and fill in your name (as you
your@email.com) and a reason for forcing a build.  Scroll to the bottom, setting branches
and revisions you want along the way, and press Start Build.

Your browser will automatically navigate to the builder's status as the worker begins
executing the build.

2.4) Shared State and Downloads Mirrors

One of the main useful features of having this build server is to speed up builds at
development workstations.  Both of these are defined by the yocto-autobuilder-
json/config.json (or your extra configuration if following the standalone installation
instructions above).  The main variables are BASE_SHAREDIR and BASE_PUBLISHDIR.  These two
are re-used in the bitbake configuration variables DLDIR and SSTATEDIR to help
individual builds re-use prior work.  The default is to append BASE_SHAREDDIR

3 di 8



with current_sources and pub/sstate, respectively. These paths can be shared by NFS,
HTTPS, etc. In the example below, we're using https and assuming that a static file
server has been configured to share the former under yocto_downloads and the latter as
yocto_sstate. To use these at a developer's station, set the following in the build/conf
/local.conf:

SSTATE_MIRRORS ?= "file://.* http://your.site.com/yocto_sstate/PATH;downloadfilename=PATH \n"
PREMIRRORS_prepend = "\
    git://.*/.* http://your.site.com/yocto_downloads/ \n \
    ftp://.*/.* http://your.site.com/yocto_downloads/ \n \
   http://.*/.* http://your.site.com/yocto_downloads/ \n \
   https://.*/.* http://your.site.com/yocto_downloads/ \n \
"

The developers have stated that this single shared state and downloads cache can be
shared across multiple tagged versions of Poky, so there is no need to maintain separate
paths for different releases.

Full Disclosure: In practice, the author has not seen a single successful cache
query from the shared state mirror, as seen through the web server logs,
despite using the same revision of branches at the server and desktop. YMMV. 
The downloads mirror however worked as expected.

2.5) Clearing Build History, Old Workers

TODO: This is really heavy-handed; it removes all history.  You could try your
luck at directly editing the state.sqlite file.

All of the build history and worker related information is stored in a database, yocto-
controller/state.sqlite.  From the yocto-controller directory, while it isn't runnign, delete the
database and recreate it: buildbot upgrade-master. Then restart the controller.

3) Configuration
As mentioned before, BuildBot is the underlying tool that Autobuilder2 uses.  It's a
python3-based framework that consists of a master and multiple workers that may be
remotely connected.  Per this guide, both are installed on the same host under
/home/pokybuild3.

The configuration for the controller is in /home/pokybuild3/yocto-controller.  This directory
also contains the Yocto Project's Autobuilder source code (in yoctoabb) and master
configuration file, master.cfg.  The master.cfg is a python file that pulls in other
configuration data from the Autobuilder source code directory.  Based on comments in
the yoctoabb/master.cfg, provisions have been made so that you can run buildbot sighup from
this directory, which would cause the configuration to reload without taking down the
controller.  This configuration data file primarily controls the web server and what port(s)
are open for workers.  It also controls authentication and notification services (by way of
importing services.py and www.py, see BuildBot's own documentation for answers).

The main yoctoabb/config.py pairs up with the yocto-autobuilder-helper/config.json to define the
relationship between what builds exist and what those builds do in terms of steps to run. 
There is a lot of duplication between these two scripts that must be managed manually,
especially as it pertains to builders, the layer repositories each needs, and the locations
of those layer repositories.

Another interesting thing about this configuration is that only one branch of the yocto-

4 di 8



autobuilder-helper is ever pulled even if you manually specify a different branch for a non-
triggered build. For example, manually Force Building beaglebone does not give you a
chance to change yocto-autobuilder-helper branches but doing the same for a-quick
would. So if you have a repository that contains multiple layers and for rocko you need
one of them, but for thud you need 2, your builder will fail if you run the build on rocko
because the worker will try to use the thud build instructions...the only ones it knows
unless you are using multiple branches of yocto-autobuilder-helper (thud, warrior, etc.) and
running a-quick forced builds or configured additional nightly builds for different branchs.
There is also no way, from a single configuration JSON stack, to specify a builder being
only compatible with a specific layer branch other than having multiple branches and
omitting that builder from the incompatible branches, then forcing a trigger build. This is
controlled by schedulers.py, so it's not a limitation; instead consider this a flag of
something you probably want to change if you have to maintain multiple branches in
regression.

The remaining portion of this section will focus on the changes required to the various
configuration files to accomplish specific tasks, which will hopefully provide some
guardrails and sign posts along the way for when you do something wrong.

3.1) Repositories

There are two main areas where repositories are defined.  The first is in yoctoabb/config.py,
which provides builders with a default set of repositories stored locally at the worker. 
The second place is more nuanced, in your config.json stack of the yocto-autobuilder-
helper under the repo-defaults.  This map defines a duplicate of that information, which is
consumed by the layer-config and run-config scripts by way of the NEEDREPOS and ADDLAYER
lists on a given template or override.

The NEEDREPOS behavior ensures that the copies of your meta layers are organized in the
BUILDDIR/../ correctly, and then if no-layer-add is set to false (or omitted), will automatically
call bitbake-layers add-layer... to update your build's bblayers.conf file.  This process goes in
order of build dependencies.  The content of NEEDREPOS can be either a repo that is a layer,
or a repo that contains multiple layers.  In the latter case, specifying meta-openembedded/meta-
oe will copy the whole repo meta-openembedded and then call bitbake-layers add-layer... for only
the sub-layer, meta-oe (assuming you've set no-layer-add to false for that repo; the default is
true).

The ADDLAYER behavior is similar but is processed during the run-config step that executes
all of your steps.  You can add this variable at the step level (it does not work at the
builder level; run-config doesn't pick it up).  Each list item in this variable takes the
form: ${BUILDDIR}/../path/to/layer.

IMPORTANT: The order of these two lists matter!  If you add a layer that has
unmet dependencies on other layers (i.e., they're not in bblayers.conf yet), the
next repo/layer in the list will fail to add because you've technically broken
your layer configuration (bitbake cannot parse it because dependencies are
missing).

IMPORTANT: If you allowed NEEDREPOS to update your bblayers.conf file, then you
do not need to use ADDLAYER as it'll be redundant.

3.2) Workers

As stated previously, this is exclusively defined by the yoctoabb/config.py file.  In it, there is
a section of workers that culminate into a final map that defines build names vs.

5 di 8



compatible workers, with default carrying the generic meaning that it should be
applicable to any build.  Ultimately the list of workers defined in this configuration can
be also thought of as users of the system because a worker will fail to join the master if
it's not in this list or provides an incorrect password (variable: worker_password).

You will also notice in the standard configuration file that there are workers in the cluster
for CentOS and Ubuntu, etc. since they're testing build host OS -specific things.

If you would like to trim this list down to just the workers you have at your site:

1. You can safely remove any of the workers_* lists since they're only used locally to
the config.py.

2. Retain the following related variables: workers, all_workers, builder_to_workers. They're
used elsewhere.

3.3) Builds and Builders

This section details how to configure new builds, and thus, new builders.  There are two
main files involved in this relationship: yoctoabb/config.py and the configuration JSON files
you specified for yocto-autobuilder-helper.  Only builds that exist in both places will actually
be visible and usable at the UI.  The remaining subsections below are general guidelines
for how these various files interact.

Removing Builders:

1. You must keep the buildertorepos and repos maps.  The former provides a top-level set
of builders and must include a key for default.  This map indicates which source
code repositories to install for a given builder by way of a repository name.  The
compliment to this map is repos, the list of repository locations and revisions. 

2. You must keep the subbuilders list because it is used by yoctoabb/builders.py
and yoctoabb/schedulers.py.

3. You must keep the a-quick and a-full builds unless you are also
modifying yoctoabb/builders.py, generate-test-result-index.py, and schedulers.py to remove
those references as well.

4. For any build you remove from yoctoabb/config.py, you should also remove in
your yocto-autobuilder-helper/config.json file (if not purely for the sake of being tidy).

Adding Builders:

1. If the build will only be manually run: add it to the yoctoabb/config.py subbuilders list.
2. If the build will be run by either of the default a-quick or a-full builds, add the name

instead to the trigger_builders_wait_[quick|full] list of your choice.  If you want both,
add it to the trigger_builders_wait_shared list.

3. If you have added a build that has requirements differing from the yocto-autobuilder-
helper/config.json defaults map, create an entry for the builder in the overrides map fill
in the details (see below for more suggestions).

4. If the build has a set of layer repositories that differs from the default list in
the yoctoabb/config.py buildertorepos map, you need to add a reference to its needs in
that map.

5. If the the repositories the builder requires are not listed in the yoctoabb/config.py repos

map, add it under the same name with its default branch.
6. If you have added repositories, you should also add it to the yocto-autobuilder-

helper/config.json repo-defaults map.
7. You should create an overrides for the builder that specifies NEEDSREPOS to identify those

layers and ADDLAYER for any layers that have the no-layer-add flag set to false in the repo-
defaults map.

6 di 8



8. If these needs are shared among multiple builders, consider adding these changes
instead to a new, named template in the templates map and then for each affected
builder, set the value of its overrides TEMPLATE to that named template.

Anatomy: overrides and templates

All of these guidelines pertain to the yocto-autobuilder-helper/config.json file (and any
overlay configurations you have).  The main difference between these two items is that
an overrides entry can specify the TEMPLATE variable, the value of which must exist in
the templates map.  There is no provision for template stacking (i.e., adding TEMPLATE to a
template has no effect).  Otherwise as the names imply the overrides values will take
precedence over any named template and the defaults.

NOTE: This is not a comprehensive list.

1. Top-level variables:
2. BUILDINFO – boolean – If enabled, the values of BUILDINFOVARS are added to the list of

variables in the build environment.
3. BUILDHISTORY – boolean – Enables INHERIT += 'buildhistory' BitBake behavior.
4. BUILDINFOVARS – list – For inheriting from image-buildinfo to save off additional build

variables.
5. DISTRO – string – Distro conf to use from the layer in the build.
6. DLDIR – string – Set the bitbake DL_DIR to where downloads should be stored (e.g.,

"DL_DIR = 'some_path'").
7. PACKAGE_CLASSES – string – Set to the value of the Yocto PACKAGE_CLASSES variable
8. SDKEXTRAS – list – Unknown.  To some end, the example appends SSTATE_MIRRORS with the

Yocto Project's shared state release mirror.
9. SDKMACHINE – string – Examples are x86_64, i686, etc.

10. SENDERRORS – boolean – Executes the upload-error-reports script which ultimately runs
the send-error-report script (from poky/scripts) to upload the results to a log server.

11. SSTATEDIR – list – Presumably a list of additions to the SSTATE_DIR variable where each
item in the list appends or removes that variable.

12. SSTATEDIR_RELEASE – list – Presumably a list of additions to the SSTATE_DIR variable during
release builds

13. WRITECONFIG – boolean – If enabled, the setup-config script is run.  Required if
specifying extravars.

14. extravars – list – Contains additional BitBake varaibles that will be added to the tail of
build/conf/auto.conf.

15. stepN -level variables:
16. ADDLAYER – list – These named layers will be added to the bblayers.conf file.  At the end

of the step, the layers will be removed in reverse order.  This is useful if your repo-
defaults -defined repository has no-layer-add set to true.  This will log as stepNa.

17. BBTARGETS – string – BitBake arguments passed to the bitbake, e.g., core-image-
minimal.  These will be appended with -k (continue) so that all targets will be
attempted rather than stopping at the first error.  This will log as stepNb.

18. SANITYTARGETS – string – BitBake targets that will be run in an emulated environment
for testing.  This will log as stepNc.

19. EXTRACMDS – list – List of commands to run within the BitBake environment (e.g., wic). 
This will log as stepNd.

20. EXTRAPLAINCMDS – list – List of commands to run without sourcing the oe-init-build-
env script.  This will log as stepNd.

Appendix A - Systemd Services

yocto-controller.service

7 di 8



[Unit]
Description=Yocto Autobuilder2 Master
Documentation=man:buildbot(1) https://docs.buildbot.net/
Wants=yocto-janitor.service

[Service]
PIDFile=/home/pokybuild3/yocto-controller/twistd.pid
Type=forking
WorkingDirectory=/home/pokybuild3/yocto-controller
User=pokybuild3
Group=nogroup
TimeoutStartSec=15
Environment=ABHELPER_JSON="config.json config-local.json"
ExecStart=/usr/bin/env buildbot start
ExecStop=/usr/bin/env buildbot stop
ExecReload=/usr/bin/env buildbot reconfig

[Install]
WantedBy=multi-user.target

yocto-worker.service

[Unit]
Description=Buildbot Worker
Wants=network.target
After=network.target
Wants=yocto-controller.service

[Service]
Type=forking
PIDFile=/home/pokybuild3/yocto-worker/twistd.pid
WorkingDirectory=/home/pokybuild3
ExecStart=/usr/bin/env buildbot-worker start yocto-worker
ExecReload=/usr/bin/env buildbot-worker restart yocto-worker
ExecStop=/usr/bin/env buildbot-worker stop yocto-worker
Restart=always
User=pokybuild3
Group=nogroup

[Install]
WantedBy=multi-user.target

yocto-janitor.service

[Unit]
Description=Buildbot Janitor
Wants=network.target
After=network.target

[Service]
Type=simple
PIDFile=/home/pokybuild3/yocto-autobuilder-helper/janitor.pid
WorkingDirectory=/home/pokybuild3/yocto-autobuilder-helper
Environment=ABHELPER_JSON="config.json config-local.json"
ExecStart=/home/pokybuild3/yocto-autobuilder-helper/janitor/ab-janitor
User=pokybuild3
Group=nogroup

[Install]
WantedBy=multi-user.target

8 di 8


